自行车里的数学 教案教学设计(人教新课标六年级下册) 快看
以下是小编为大家准备的自行车里的数学 教案教学设计(人教新课标六年级下册),供大家参考借鉴,希望可以帮助到有需要的朋友。如果这15篇文章还不能满足您的需求,您还可以在本站搜索到更多与自行车里的数学 教案教学设计(人教新课标六年级下册)相关的文章。
(资料图片)
篇1:自行车里的数学 教案教学设计(人教新课标六年级下册)
教学内容:
人教版义务教育课程标准试验教科书第66至67页“自行车里的数学”
三维目标:
1.知识与技能: 理解并掌握自行车“蹬一圈走多远”的计算方法,探索变速自行车的速度与其内在结构的关系。
2.过程与方法:引领学生经历“提出问题--分析问题--建立数学模型--解释并应用”基本过程,获得应用数学解决实际问题的思考方法。
3.情感态度与价值观:在自主探究、合作交流的学习过程中获得良好的情感体验,增强学生学好数学、用好数学的意识。
设计理念:学习知识应是一种主动构建的过程,本节课拟通过解决生活中常见的与自行车有关的问题,使学生进一步了解数学与生活的广泛联系。经历“提出问题--分析问题--建立数学模型--求解--解释与应用”的解决问题的基本过程,使学生获得解决实际问题的思想方法,加深对所学知识的理解。
教学准备:自行车实物、指定部分学生实践测量蹬一圈行的路程
教学过程:
一.情景导入
师:咱们班的同学有多少人会骑自行车啊?(大部分学生举手)
师:你们知道自行车里也含有数学问题吗?老师准备了一俩自行车,谁能从中找出我们学过的知识?(三角形的知识、圆的知识等)
师:其实自行车里还蕴含着更为丰富的数学知识,今天我们就一起探究自行车里的数学。
板书课题 “自行车里的数学”
二.研究普通自行车的速度与内在结构的关系
师:大家知道自己的自行车蹬一圈能走多远吗?怎样解决这个问题呢?
【兴趣是最好的老师。开篇设疑,以疑激趣,学生学习欲望高涨,注意力高度集中。】
生:可以直接测量。
师:课前我请几位同学对同一辆自行车蹬一圈所行的路程进行了独立测量,请他们来汇报一下测量结果。
生甲:我蹬一圈行了6.5米。
生乙:我行了5.7米。
生丙:我行了8.8米。
生丁:我只行了5.4米。
生:
【指定部分学生课前测量,既能促使学生课前预习,又能节约课堂时间,提高课堂效率。】
师:这些同学的测量结果差距很大,说明测量这种方法不太准确,误差很大。有没有准确一些的方法呢?
生:计算。
师:怎么算?
生:看看蹬一圈,车轮转几圈,再用车轮转的圈数乘车轮的周长。
师:蹬一圈是谁转动了一圈?车轮转动的圈数实际是谁的圈数?
生分组操作,师注意引导,讨论交流后汇报。
(1)蹬一圈是指脚踏处的齿轮转一圈
(2)车轮转动的圈数实际是后齿轮转动的圈数
师:照这样分析,解决问题的关键是什么?
生:前齿轮转一圈,后齿轮转几圈.
【引导学生透过表面现象发现其作为数学问题的本质,进而展开有效的探究。】
师:怎样才能知道前齿轮转一圈时后齿轮转的圈数呢?
生:数一数。
师:我们就来数一数。
通过实践,学生发现数的圈数也不准确。
师:有没有更准确的方法呢?大家注意观察,这两个齿轮通过链条连接在一起。前齿轮转动一个齿,链条怎么动?后齿轮怎么动?
师慢慢转动前齿轮,生观察、讨论。
生:前齿轮转动一个齿,链条移动一小节,带动后齿轮转动一个齿。
师:同学们观察得很仔细。如果前齿轮转动2个齿,后齿轮怎么动?如果前齿轮转动5个齿呢?10个齿呢?同学们有没有发现什么规律?
生1:前后齿轮转动的齿数始终一样。
生2:我知道两个互相咬合的齿轮,它们的齿数和转的圈数成反比例关系。自行车的前后齿轮通过链条连接在一起,也相当于两个咬合的齿轮。所以,前齿轮的齿数乘圈数等于后齿轮的齿数乘圈数。
师:这位同学说的很好。根据“前齿轮的齿数×它的圈数=后齿轮的齿数×圈数”,前齿轮转一圈时,后齿轮转的圈数怎样用算式表示?
生说师板书:前齿轮的齿数∶后齿轮的齿数
归纳解题思路:自行车蹬一圈走的距离=前齿轮的齿数∶后齿轮的齿数×车轮的周长
【通过此轮探究活动,学生的观察能力、逻辑思维能力、归纳概括和语言表达能力都有所提高。】
分组搜集数据,代入数学模型,求出答案。
汇报交流。
三.巩固练习
1.蹬一圈能走多远
前齿轮齿数:26
后齿轮齿数:16
车轮直径:66厘米
2.小英家离学校680米,她骑车上学大约要蹬多少圈?
【练习设计有层次,在巩固基础知识时适度提高,满足绝大多数学生的学习需要。】
四.研究变速自行车的问题
1.出示变速自行车的主要结构图:有2个前齿轮,6个后齿轮。
分组探究(1)能变化出多少种速度?
(2)蹬同样的圈数,哪种组合使自行车走得最远?
师巡视并指导有困难的小组
2.汇报第一个问题:12种方案。
3.汇报第二个问题:当“前齿轮的齿数∶后齿轮的齿数”比值最大时,走得最远。
五.思维拓展
一位自行车运动员在比赛时要经过各种路段,你觉得上坡时应怎样搭配前后齿轮?
篇2:六年级下册数学《自行车里的数学》教案
六年级下册数学《自行车里的数学》教案
教学目标:
1、运用所学的圆、比例等知识解决问题。
2、了解普通自行车和变速自行车的速度与其内在结构的关系,知道变速自行车能变化出多少种速度。
3、通过解决生活中常见的有关自行车的问题,培养学生解决实际问题的能力。
4、经历解决问题的基本过程,了解数学与生活的密切关系。
教学重点:
运用所学的比例或与其相关的知识解决自行车中的数学问题。
教学难点:
运用所学的比例或与其相关的知识解决自行车中的数学问题。
教学过程:
环节预设 教师活动 学生活动 设计意图
一、情境导入 你知道哪些自行车的种类?
出示各种自行车的图片 学生积极思考、回答问题。 先给出学生一个熟悉的生活场景,便于学生理解。
二、新知讲授
1、揭示课题
(1)说一说你了解到的有关这两种自行车(普通自行车和变速自行车)的知识。
(2)自行车里会有数学问题吗?想一想。
2、研究普通自行车的速度与内在结构的关系
(1)提出问题:两种自行车,各蹬一圈。能走多远?引出学生对自行车里的数学的研究。
(2)分析问题
①、学生讨论如何解决问题。
方案一:直接测量,但是误差较大。
方案二:根据车轮的周长乘以后车轮转的圈数,来计算蹬一圈车子走的距离。
②、讨论:前齿轮转一圈,后齿轮转几圈?
前齿轮转的圈数前齿轮的齿数=后齿轮转的圈数后齿轮的齿数
3、建立数学模型,收集数据并求解。
(1)蹬一圈车子走的距离=车轮的周长(前齿轮的齿数:后齿轮的"齿数)
(2)分组收集所需要的数据,带入上述模式,求出答案。
4、汇报结果。各小组展示并解释本组的研究过程和结果,在比较结果。
三、研究变速自行车能组合出多少种速度
1、提出问题:变速自行车能组合出多少种速度?
(1)了解变速自行车的结构。(有2个前齿轮,6个后齿轮。)
(2)根据这个结构,可以组合出多少种速度?
2、分析问题,求解,汇报。
3、蹬同样的圈数,哪种组合使自行车走得最远? 学生讨论交流并回答问题。
学生通过观察、思考、讨论、合作、解决问题等一系列学习过程,逐步培养自己的合作探索精神,更加善于在生活中进行学习。
动手操作的过程中,学生会逐渐融入到知识形成的整个过程当中去,培养学生解决实际问题的能力,了解数学与生活的密切关系。
四、巩固应用
1、已知:前齿轮齿数为:26,后齿轮齿数为:16,车轮直径为:66cm。问:①你能算出蹬一圈,它能走多远?②小红家距离学校大约500米,从家到学校至少要蹬多少圈?
共两题 学生进行思考、解答。 通过习题的演练,让学生将知识点进一步应用到实际解决问题当中。
五、课堂小结
课堂中我比较重视学生的实际操作,从复习引入开始就让学生通过看一看、数一数等数学活动充分激活知识储备。在教学中教师把变速自行车带到课堂中来,让学生实际操作自行车,进一步理解前后齿轮的关系。同时也间接地了解自行车的省力与速度的关系。把操作、探究和问题的解决有机地结合起来,把学生放在了主动的地位。
篇3:自行车里的数学 教案(人教版六年级下册)
[教学目标]:
1、运用所学的圆、比例等知识解决问题;了解普通自行车和变速自行车的速度与其内在结构的关系,知道变速自行车能变化出多少种速度。
2、通过解决生活中常见的有关自行车的问题,培养学生解决实际问题的能力
3、经历解决问题的基本过程,了解数学与生活的密切关系。
[教学重点难点]:
运用所学知识解决实际问题。
[教学过程]:
一、揭示课题
1、说一说你了解到的有关这两种自行车(普通自行车和变速自行车)的知识。
2、自行车里会有数学问题吗?想一想。
二、研究普通自行车的速度与内在结构的关系
1、提出问题:两种自行车,各蹬一圈。能走多远?引出学生对自行车里的数学的研究。
2、分析问题
(1)学生讨论如何解决问题。
方案一:直接测量,但是误差较大。
方案二:根据车轮的周长乘以后车轮转的圈数,来计算蹬一圈车子走的距离。
(2)讨论:前齿轮转一圈,后齿轮转几圈?
前齿轮转的圈数×前齿轮的齿数=后齿轮转的圈数×后齿轮的齿数
建立数学模型,收集数据并求解。
(1)蹬一圈车子走的距离=车轮的周长×(前齿轮的齿数:后齿轮的齿数)
(2)分组收集所需要的数据,带入上述模式,求出答案。
4、汇报结果。各小组展示并解释本组的研究过程和结果,在比较结果。
三、研究变速自行车能组合出多少种速度?
1、提出问题:变速自行车能组合出多少种速度?
(1)了解变速自行车的结构。(有2个前齿轮,6个后齿轮。)
(2)根据这个结构,可以组合出多少种速度?
2、分析问题,求解,汇报。
3、蹬同样的圈数,哪种组合使自行车走得最远?
四、课堂作业
1、一辆自行车的车轮直径是0.7米,前齿轮有48个齿,后齿轮有16个齿,蹬一圈自行车前进多少米?
2、一辆前齿轮有28个齿,后齿轮有14个齿,蹬一圈自行车前进5米。求自行车的车轮直径。(保留两为小数)
五、课堂小结
自行车里的学问可真大,你还能提出一些数学问题并解决吗?
[自行车里的数学]
1、踏板蹬一圈,是不是车轮也走一圈?
2、踏板蹬一圈,所走的路程与什么有关?
最佳答案
踏板蹬一圈,是不是车轮也走一圈?
不是,因为踏板所带动的大轮与自行车后轮上的飞轮大小是不同的,所以当踏板转一圈时,后轮要轮上5-6圈.
踏板蹬一圈,所走的路程与什么有关?
与自行车的轮胎直径有关,就是我们说的20、24、26、28寸
篇4:自行车里的数学教学设计
综合应用自行车里的数学是在第三单元比例之后安排的。旨在让学生运用所学的圆、排列组合、比例等知识解决实际问题。通过解决生活中常见的有关自行车里的问题,了解数学与生活的广泛联系,经历提出问题分析问题建立数学模型求解解释与应用的解决问题的基本过程,获得运用数学解决实际问题的思考方法,并加深对所学知识及其相互关系的理解。
自行车里的数学主要研究两个问题:普通自行车的速度与其内在结构的关系;变速自行车能变化出多少种速度。
一、研究普通自行车的速度与内在结构的关系
这一部分由以下4个环节组成。
1.提出问题。教材通过呈现学生的熟悉两种不同型号自行车的图片,直接提问蹬一圈,能走多远,引出学生对自行车里的数学问题的研究。
2.分析问题。教材分两步呈现。首先,呈现了学生探讨如何解决问题的场面,提出了两种方案。一,通过直接测量来解决问题,但误差较大。二,通过车轮的周长乘上后齿轮转的圈数来计算蹬一圈车子走的距离。接下来,呈现了学生探讨如何解决第二个方案中的关键问题前齿轮转一圈,后齿轮转几圈的过程。学生想到如果只凭观察是数不清的,要通过更精确的方法找出答案。学生根据链条间的孔与前后两个齿轮的每个齿对应,前齿轮转过一个齿,后齿轮也一定转过一个齿,判断出:前齿轮转的圈数前齿轮的齿数=后齿轮转的圈数后齿轮的齿数,解决了这个关键问题,从而理清了解决问题的思路。
3.建立数学模型、收集数据并求解。首先,学生根据分析问题得到解题思路,建立数学模型:蹬一圈自行车走的距离=车轮的周长(前齿轮的齿数∶后齿轮的齿数)。接下来,学生分组收集所需要的数据,再代入数学模型,求出答案。
4.汇报交流。各小组展示并解释各自的研究过程和结果,再对各组的结果进行比较。
二、研究变速自行车能变化出多少种速度
在学生研究清楚了普通自行车行驶速度与其内部结构的关系之后,进一步让学生探讨变速自行车中的`数学问题──可以组合出多少种速度。教材先介绍了一种变速自行车的主要结构:有2个前齿轮,6个后齿轮。接着提出问题能变化出多少种速度,再呈现学生收集数据建立数学模型代入数据、求解解决问题的过程。最后通过一个问题蹬同样的圈数,哪种组合使自行车走的最远,引导学生对各种速度的产生进行深入的解释。教学建议
1.这个活动可用1课时进行。
2.正式活动前,教师应充分准备课上需要用到的数据和图片。如,不同品牌、不同型号的普通自行车和变速自行车的车轮直径、前、后齿轮的个数及齿数;普通自行车和变速自行车链条、前齿轮和后齿轮三者组合关系的图片。教师也可以要求学生做一些准备。如,请学生观察自行车,了解自行车的结构和行进的基本道理;收集一些自行车的相关数据等等。
3.正式教学时,应注意以下几点。
(1)在研究两个问题之前,教师可以先让学生说一说自己了解到的两种自行车的知识,再提出问题。这样可以帮助学生更好地理解和分析所要解决的问题。如果学生理解有困难,尤其是变速自行车的变速原理,教师可借助课前准备好的图片进行说明。
(2)可以让学生以小组为单位,讨论、研究解决问题的方案,使学生充分经历分析问题建立数学模型求解的解决问题的基本过程。教材上呈现了学生在解决问题过程中可能出现的方案,教学时教师要注意本班同学的不同思路,并适当加以引导,帮助学生建立相应的数学模型。
(3)如果学生课前没有收集到解决问题所需要的数据,教师应及时为学生提供。
(4)在各小组成功地解决了每一个问题之后,教师应请每一个小组解释、说明本组研究的思路和结果。并组织全班同学对各组的研究方法和结果进行比较,以使学生获得运用数学解决实际问题的思考方法。
(5)除了教材上提出的这两个问题以外,教师还可以提出一些其他问题,引发学生的深入思考。如,让学生按由远到近(蹬同样的圈数,使车走的距离)的顺序,将各种组合排序;如何使这辆变速自行车能变化出12种不同的速度等等。教师也可以让学生自己提出一些自行车里的数学问题并解决它。这样不仅可以使学生了解数学与生活的广泛联系,还可以培养学生从不同的角度发现实际问题中所包含的数学信息的能力。
篇5:《自行车里的数学》教学设计
教学内容:
人教版教材六年级下册第67页及相关内容。
教学目标:
1.综合知识解决生活中常见的有关自行车里的数学问题。
2.经历“提出问题——分析问题——建立数学模型——求解——解释与运用”的问题解决的基本过程。
3.感受数学知识与日常生活的密切联系,体会学数学、用数学的乐趣,激发学习知识的热情。
教学重点:通过实践活动,研究普通自行车的速度与其内在结构的关系,研究变速自行车能变化出多少种速度的组合数
教学难点:研究普通自行车的前、后齿轮数与它们的转数的关系。
教学准备:多媒体课件
教学过程:
一、揭示课题
今天我们来探究自行车里的数学。
二、研究普通自行车的速度与内在结构的关系
提出问题
自行车蹬一圈,走多远?
分析问题
方法一:直接测量(误差大)
方法二:计算法
解决问题
自行车行进原理
探究车轮转动的圈数与什么有关?
探究前齿轮转一圈,后齿轮转几圈
合作探究
前齿轮转动一个齿,后齿轮转动几个齿?前齿轮走过2个齿呢?5个齿呢?
你发现了什么规律?
汇报交流
前后齿轮转动的什么数是相等的?
结论:前齿轮齿数×前齿轮转数=后齿轮齿数×后齿轮转数
后齿轮转数=前齿轮齿数/后齿轮齿数
建立数学模型
自行车蹬一圈走的距离=前齿轮齿数/后齿轮齿数×车轮周长
运用知识
自行车车轮直径是0.8米,前轮是48个齿,后轮是16个齿,蹬一圈自行车跑多少米?(
三、研究变速自行车能变出多少种速度
观察变速自行车
变速自行车一般有多个前齿轮多个后齿轮,例如这款变速自行车有2个前齿轮,6个后齿轮。
合作探究
出示书上表格,小组合作交流,并完成表格填写
思考:蹬同样的圈数,前、后齿数比是( )的组合使自行车走得最远,为
什么?
汇报交流
自行车蹬一圈走的距离= 齿数比 ×车轮的周长,当车轮周长一定时,前齿轮数齿数:后齿轮数齿数的比值最大时,自行车走的最远。
四、课堂小结师:同学们,通过今天的实践活动,你又有哪些新的收获呢?
篇6:《自行车里的数学》教学设计
教材分析:
综合应用《自行车里的数学》是小学数学六年级下下册中在第三单元“比例”之后安排的。旨在让学生运用所学的圆、排列组合、比例等知识解决实际问题。通过解决生活中常见的有关自行车里的问题,了解数学与生活的广泛联系,经历“提出问题—分析问题—建立数学模型—求解—解释与应用”的解决问题的基本过程,获得运用数学解决实际问题的思考方法,并加深对所学知识及其相互关系的理解。
《自行车里的数学》主要研究两个问题:普通自行车的速度与其内在结构的关系;变速自行车的能变化出多少种速度。
教学理念:
数学是对客观世界数量关系和空间关系的一种抽象。可以说生活中处处有数学。《数学课程标准》中指出:“数学教学是数学活动,教师要紧密联系学生的生活环境,从学生的经验和已有的知识出发,创设生动的数学情境……。” 在新一轮课程改革的实施过程中,“数学生活化”问题受到越来越多的教育工作者的关注和肯定。《数学课程标准》明确要求“使学生感受数学与生活的密切联系,从学生已有的生活经验出发,让学生亲历数学过程。”在生活中,数学无处不在,小到日常购物,大到航空航天工程等数据的处理。学生学习数学是“运用所学的数学知识和方法解决一些简单的实际问题的,必要的日常生活的工具。”引导学生把所学知识联系,运用于生活实际,可以促进学生的探索意识和创新意识的形成,培养学生初步的实践能力。
新课程标准数学教材突出了数学与实际生活的联系,许多教学内容都建立了形象的生活情境,以帮助学生更好地学习数学,应用数学。《自行车里的数学》就是让学生运用所学的圆、排列组合、比例等知识来解决生活中常见的有关自行车里的实际问题。在传授数学知识和训练数学能力的过程中,教师要自然而然地注入生活内容,引导学生学会运用所学知识为自己生活服务。这样的`设计,不仅贴近学生的生活水平,符合学生的需要心理,而且也给学生留有一些瑕想和期盼,使他们将数学知识和实际生活联系得更紧密。让数学教学充满生活气息和时代色彩,真正调动起学生学习数学的积极性,培养他们的自主创新能力和解决问题的能力。
教学目标:
1、让学生运用所学的圆、排列组合、比例等知识解决实际问题。
2、让让学生了解数学与生活的广泛联系,获得运用数学解决实际问题的思考方法,并加深对所学知识及其相互关系的理解。
教学重难点:
1、普通自行车的速度与其内在结构关系的数学模型;
2、变速自行车的能变化出多少种速度。
教学过程
一、新课导入:
师:同学们,我们学数学用数学,生活中处处有数学,你看我们这自行车里就有许多数学知识。今天我们就一起研究自行车里的数学
二、新课教学:
1、了解自行车的结构和行进原野
(课前在讲台上摆放3辆自行车,一辆普通自行车,一辆变速自行车,一辆儿童自行车。)
师:同学们,谁知道自行车是怎么行进的?(教师边说边推动一辆自行车,请学生仔细观察、讨论、回答。)
生:靠车把推动的。
生:靠车轮流动的。
生:靠脚踏推动齿轮转动,齿轮带动车轮前进的。
师:齿轮是怎样带动车轮的?请同学们仔细观察。(教师转动脚踏,让学生仔细观察。)
通过学生观察回答,教师总结提出结论:
①脚趾蹬一圈,前齿轮转一圈,
②链条跟着前齿轮转动,后齿轮跟着链条转动,后轮跟着后齿轮转动。链条间的孔与前后两个齿轮的每个齿对应,前齿轮转过一个齿,后齿轮也一定转过一个齿。前齿轮转多少齿,后齿轮也转多少齿。
③后齿轮转一圈,车轮转一圈。
[教学时,密切联系学生的生活实际,从学生的生活经验和已有知识出发,引导学生开展观察、操作、推理等活动,获得基本的数学知识和技能。]
2、研究普通自行车的速度与内在结构的关系
①提出问题
师:我们刚才了解了自行车行进的原理,哪么谁知道脚踏噔一圈,自行车能走多远呢?
②分析问题
让学生以小组为单位,讨论研究解决问题的立案。
篇7:数学思考 教案教学设计(人教新课标六年级下册)
教学内容:书本91页和94页内容
教学目标:1、使学生学会用数学思想方法解决问题,形成一些基本策略,发展实践能力与创新精神。
2、进一步体验数学活动充满着探索与创造
教具:画好表格、圆的大纸;直尺;绳子;剪刀
学具:画好表格、圆的作业纸;直尺;火柴
教学过程设计:
一、激趣导入
师:在上课之前,老师先给大家讲个故事,从前有座山,山上有座庙,庙里有个老和尚,老和尚在给小和尚讲故事。在讲什么故事,大家知道吗?
生:……
师:那么照这么讲下去,第23 句我们应该讲什么呢?
生:……
师:对了,由此方法我们也可以知道第60句我们讲哪一句。
再引出找规律填数字
师:大家发现了吗?刚刚讲的两个题目都与什么有关?(找规律),对,这是大家在一到五年级学过的两类找规律的题目,一类是在数字之间找规律;第二类是周期规律,今天老师带着大家来探索一种新的规律,大家有兴趣吗?
二、在摸索中前进
师导入:今天,小明家里来客人了,妈妈给小明一个任务--摆桌椅,(点课件)一张桌子可以坐6个人,客人比较多,就又摆了一张桌子,这回儿可以坐10个人,大家想想看,若是桌子的数量又增加的话相应的椅子数量是多少呢?
例1:(课件播放)按图中的方式继续摆桌椅
(1)填好表格数据,点课件,出示数据
(2)师:是怎么填写出来的?(每增加一张桌子就多4把椅子)
(3)师:除此之外你有其它的发现吗?点课件提醒学生两个量之间还有公式的关系。
(桌子的张数×4+2=椅子的数量)
师:大家觉得这题目有意思吗?(有)下面一个题目需要同学们一起来合作完成了
例2:(课件播放)用火柴棒按下面的方式搭三角形
(1)师:要求是观察图后同桌合作完成搭火柴棒,再填好表格数据,把在此过程中发现的规律及时写在作业纸上
(2)反馈:报数据,说说是怎么样得出数据的?(火柴棒堆出来的;推导出来的)
(3)师总结规律:
每多一个三角形就多两根火柴棒
三角形的个数与火柴棒的根数之间有什么关系?
(火柴棒的根数等于三角形的个数×2+1)
由此我们用n表示三角形的个数,用A表示火柴棒的根数,我们就有了A=2n+1
小结
师:讲了两个题目了,老师想问问,今天探索的新规律,新在哪?
生:……
师小结:今天我们研究的是两个量之间的一种规律,这类题我们不仅可以找出某个量前后数字之间的关系,有时还可以得到这两个量的一个公式,其实这个公式就是规律的呈现方式。
有了前后数之间的关系或是有了公式,我们在解决较大的数字问题时就轻松多了!
师再点课件:当摆出25个三角形的时候,需要的火柴棒根数是多少?(51)
例三:(课件播放蛋糕图片)师:这个蛋糕漂亮吧?让人看得馋涎欲滴,看到蛋糕很多人会想到生日,那么老师相信大部分同学在生日时会切蛋糕,好,下面一个问题就与切蛋糕有关,假如今天是班上是某个同学的生日,老师要求他切五刀,大家帮他想想看,最多能切给几个同学吃?要求是只能从上往下切,蛋糕可以不均匀。想好方法的学生请举手。
生说说方法
师:对了,一下子让我们切五刀太复杂了,我们可以从简单的数字入手,然后逐渐来研究比较大的数字,那么我们应该从一刀入手(两块),两刀(四块),三刀呢?开始复杂起来了,不要急,我们课前不是在作业纸上画了一个圆吗?你们把它当作蛋糕,用手中的笔和尺子当作刀,切切看,切好了举手。
生到黑板上板演,并说说怎么样就能保证切出来的蛋糕块数是最多的。
生再独立完成切四刀
屏幕上点出分别切一刀、两刀、三刀、四刀对应的蛋糕块数
师:下面我们回到刚才的问题,如果是切5刀呢?
生会低头再去画,师提醒用规律的方法去做
三、巩固新课
师:前面三题都是我们全班同学齐心协力完成的,下面做个独立作业,看看同学们掌握情况如何?
书本翻到94页,独立完成第三题
四、趣题拓新
师:连续做题我们来休息一下,拿起刚才那张作业纸,这张纸我们还可以干什么呢?(折飞机,折花)对了,同学们说的都与折有关,老师做最简单的动作,(讲纸对折)这张纸有什么变化(一层变两层)再对折呢?……
填数据,找规律,出示折了30次以后的数据,然后与珠穆朗玛峰比高。
师:其实,这是人们在简单的生活经历中找到一定的规律后得到的一种不可思议的发现。老师希望同学们也能在之间的日常生活中多观察、多探索,试着去寻找一种规律然后去挖掘别人未知的世界!
展示“课后探索”
篇8::《解决问题》 教案教学设计(人教新课标六年级下册)
编制人:蔡 娜 时间: . 08 .25
课题 NO.3-4
班级 姓名 小组 小组评价
学习目标:
1、学会用方程解答“已知一个数的几分之几是多少,求这个数”的应用题。会分析除法应用题中的数量关系,学习用线段图表示题中数量关系的方法。
2、通过独立思考、小组合作、展示质疑,在学习过程中,感悟分数除法应用题之间的内在联系,培养推理能力。
3、极度热情,全力以赴,精彩展示,做最好的自己。
重点:会用方程解答“已知一个数的几分之几是多少,求这个数”的实际问题。
难点:根据分数乘法的意义,找到等量关系,正确列出方程。
使用说明与学法指导:
先由学生自学课本,经历自主探索总结的过程,并独立完成自主学习部分,通过独立思考及小组合作,能够学会用方程解答“已知一个数的几分之几是多少,求这个数”的应用题。会分析除法应用题中的数量关系,学习用线段图表示题中数量关系的方法。并独立完成导学案,然后学习小组讨论交流,让同学们进行展示,小组间互相点评,对于有疑问的题目教师点拨、拓展。
一、自主学习:xkb1.com
1、自学课本P37-P39页
思考:1)、列方程解应用题的关键。
2)、用算术法解除法应用题的关键。
2、填空。
1)、 米是 米的( ); 米相当于( )米 。
2)、自行车的速度是汽车的 ,把( )看作单位“1”。
3)、一个数的 是 ,这个数是( )。
4)、一根卅绳长54米,剪去 ,还剩( )米,把( )看作单位“1” 。
3、解方程。
二、合作探究:
例1、根据测定,成人体内的水分约占体重的 ,而儿童体内的水分约占体重的 ,小明体内有28千克的水分,小明的体重是爸爸的 。
1)、小明的体重是多少千克?
2)、小明爸爸的体重是多少千克?
要求:(1)、用两种方法解答。
(2)、画出线段图表示题中的数量关系。新课标第一网
小结:(1)、列方程解应用题的关键:
(2)、用算术法解分数除法应用题的关键:
例2、小伟买了一枝钢笔,一枝圆珠笔和一枝铅笔,一枝圆珠笔的价钱是一枝钢笔 ,一枝铅笔的价钱是一枝圆珠笔的 ,买一枝铅笔花了2元钱,买一枝钢笔花多少元钱?
要求:1)、用两种方法解答。
2)、画线段图表示题中的数量关系。
小结:1)、分数连除应用题的解题关键:
2)、分数连除应用题的解题方法:
方程解法:
算术解法:
三、学以致用:
1、画线段图表示下面各数量关系。
1)、鸡的只数是鸭的 。
2)、女生人数占全班的 。
2、列式计算新课 标 第 一 网
1)、一个数的 是64,求这个数。
2)、12的 与什么数的2倍相等?
3)、 加上一个数的 ,和是1,求这个数。
四、解决问题:
1、小红看一本书,已看了76页,是未看页数的 ,这本书小红还有多少页未看?
2)、修一条公路,施工方工作3天,每天修 千米,已知3天修了这条路的 ,这条路一共有多长?
3)、小明看一本书,第一天看了全书的 ,第二天看了余下的 ,这时还剩80页没看,这本书共有多少页?
篇9::《解决问题》 教案教学设计(人教新课标六年级下册)
编制人:蔡 娜 时间:2010 . 08 .27
课题 NO.3-5
班级 姓名 小组 小组评价
学习目标:
1、掌握用方程和算术方法解决稍复杂的“已知一个数的几分之几是多少,求这个数”的实际问题。学会运用线段图帮助分析数量关系。
2、在分析数量关系解决实际问题的过程中,提高学生分析问题和解决问题的能力。
3、极度热情,全力以赴,精彩展示,做最好的自己。
重点:掌握解决稍复杂的“已知一个数的几分之几是多少,求这个数”的实际问题的方法。
难点:学会分析题中数量之间的关系。
使用说明与学法指导:
先由学生自学课本,经历自主探索总结的过程,并独立完成自主学习部分,通过独立思考及小组合作,能够掌握用方程和算术方法解决稍复杂的“已知一个数的几分之几是多少,求这个数”的实际问题。学会运用线段图帮助分析数量关系。
并独立完成导学案,然后学习小组讨论交流,让同学们进行展示,小组间互相点评,补充之后由老师进行点拨,最后巩固知识。
一、自主学习:
1、自学课本P39-P40页
2、直接写出得数。
3、画线段图表示下面各数量关系,并写出等量关系式。
1)、杨树比柳树少 。
2)、柳树比杨树多 。
xkb1.com
二、合作探究:
例1、美术小组有25人,美术小组的人比航模小组多 ,航模小组有多少人?
要求:1)、画线段图表示题中的数量关系。
2)、用方程和算术方法两种方法解答。
小结:解决稍复杂的“已知一个数的几分之几是多少,求这个数”的实际问题的解题关键是:
例2、一个机械加工厂,九月份生产一种零件1000个,比原计划多生产 。多生产多少个零件?
要点提示:解答分数应用题,在找准单位“1”的同时,还要看清所要求的问题与单位“1”的关系。
三、学以致用:
1、想一想,填一填。
商店运来彩电150台,( ),运来空调多少台?
1)、空调比彩电少 ,列式是( )。
2)、150除以(1 - ),条件是( )。
3)、空调比彩电多 ,列式是( )。
4)、彩电比空调多 ,列式是( )。
2、列式计算
1)、一个数的 是 的 ,求这个数。
2)、 与 的积再除以 ,商是多少?
3)、 的倒数的3倍减去 ,差是多少?
四、解决问题:新课标第一网
1)、超市运来一批洗衣粉,第一天卖出 ,第二天卖出剩下的 ,第三天和第二天卖得一样多,这时还有500袋,超市一共进了多少袋洗衣粉?
2)、有一桶油,第一次到出总数的 ,第二次倒出总数的 ,第二次倒出12千克,第一次倒出油多少千克?
3)、一筐苹果的 是16千克,吃去这筐苹果的 ,还剩多少千克?
4)、有一根竹竿插入池塘中,竹竿的 露出水面, 插在泥里,池塘水深1.7米,问这根竹竿长多少米?
新课标第一网xkb1.com
篇10:应用题/简单应用题 教案教学设计(人教新课标六年级下册)
简单应用题只需要一步计算就能求得答案的应用题。
简单应用题都是由两个己知条件和一个问题组成的,而且问题与两个已知条件都是直接相关的,也就是说,都可以由已知条件经过一步计算直接求出答案。至于在不同的题目里用什么方法计算.则需要认真分析题中的数量关系(已知条件和问题的关系),然后根据四则运算的意义,以及已知的是哪两个条件来确定。
练习: xkb1.com
一 、根据问题找出需要的条件,写出数量关系。
①平均每月生产多少台?
②剩下的是全长的几分之几?
③这个长方形的面积是多少?
④男生比女生多百分之几?
⑤实际比计划每小时多走多少米?
⑥圆柱的侧面积是多少?
⑦三角形面积是多少?
⑧出勤率是百分之几?
二、关山小学六(1)班有男生40人, 女生20人。(根据两个条件,提出不同
问题,编成简单应用题,并解答。)
①共有学生多少人? ②男生比女生多多少人?(女生比男生少多少人?)
③男生是女生的几倍?(男生是女生的百分之几?) ④女生是男生的几分之几?(女生是男生的百分之几?)
三、解答后比较问题的不同。
一辆汽车3小时行180千米。
① 平均每小时行多少千米? ②行1千米需要多少小时?
复合应用题
复合应用题就是不能一步计算求得答案,而需要两步或者两步以上的计算才能求得答案的应用题。
一. 解答复合应用题分析方法一般有两种:
①分析法: 问题 →条件 ②综合法; 条件 → 问题
二.解答应用题-般步骤:
①弄清题意,找出题中已知条件和所求问题。
②分析题中数量关系,确定先算什么,再求什么,然后算什么。
③列式求得结果。
④检验是否正确,写出答语。
三.解答方法:⑴ 分步列算式解答。 ⑵列综合算式解答。
四.练习;
1. 修一条高速公路,原计划每月修3600米,10个月完成任务,实际每月修900米,实际几个月完成了任务?
2. 从甲地到乙地共行13千米,前1.5小时,平均每小时行4千米,后在山地行走,平均每小时行3.5千米。在山地行走了多少小时?
3.学校举行科技节,学生制做航模250件,海模150件,航模件数是总件的百分之几?海模件数是总件的百分之几?
4 .一桶汽油重25千克,用去 ,剩下多少千克?
5 .李师傅一天共生产300个零件,经检验有3个不合格产品,求产品的合格率。
6. 某化工厂采用新技术后, 每天用料14吨。这样,原来7天用的原料,现在可以用10天。这个厂现在比原来每天节约百分之几?
列方程解应用题
列方程解应用题的一般步骤:
①弄清题意,找出题中已知条件和所求问题。
②分析题意,找出题中等量关系式。
③用x表示未知数量,列出方程,解方程。
④检验是否正确,写出答语 。
列方程解应用题的关键是找出题中的等量关系式。有的应用题,等量关系式很明显,直接可得到;有的应用题等量关系式不明显,要分析题意才能找出;有的应用题等量关系式隐藏,如周长公式、面积公式、体积公式不会出现在题目中,所以熟记学过所有的字母公式很重要。
练习:
1.找等量关系把方程列完整。
(1) 小思看一本96页的科幻小说。她每天看X页,看了5天还剩24页没看。
=96
或 =24
(2妈妈买了2千克白菜,每千克2.4元,又买了X千克萝卜,每千克2.8元。一共用去
13.6元。
=13.6
或 =2.4×2
(3)通讯班铺设一条全长X千米光缆线路,工作15天架设了全长的93.75%。再用同样的工效工作1天,铺设1.5千米。
=1.5×15
2.列方程解下列各题。
(1)长方形周长30cm,长8cm。宽是多少cm? (2)某田径队有男队员30人,比女队员的 少3人。
女队员有多少人?
(3)海滨县兴隆农场种小麦189公顷,小麦播种面积是玉米的112.5%,种玉米多少公顷?
(4)商店运来苹果750㎏,比运来橘子的2倍多250㎏,运来橘子多少吨?
(5)一支工程队修一条公路。第一天修了38米,第二天修了42米。第二天比第一天多修的是这条路全长的 。这条路全长多少米?
用不同方法解答应用题
把题中的关键条件转化成另一种说法是难点,我们要克服思维定势,提倡最佳解法。
练习:
1.图书室新购了文学书和科技书共750本,己知文学书是科技书的2倍,文学书和科技书各有多少本?
2.西山村去年收晚稻30000千克,相当于早稻谷的 。去年共收稻谷多少千克?
3.水是由氢和氧按1:8的质量比化合成的。如果要化合7.2千克的水,需要氢和氧各多少千克?
4.学校买来62.5米电线,每12.5米可做5根插头线。照这样计算,买来的电线能做多少根插头线?
xkb1.com
5.学校买来乒乓球60个,比买来的篮球少 ,买来乒乓球和篮球共多少个?
6.养鸡场肉用鸡是蛋用鸡的5倍,蛋用鸡比肉用鸡少1800只。蛋用鸡比肉用鸡各养多少只?
7.一个长方体棱长和是72㎝,已知长宽高的长度比是3:2:1,这个长方体体积是多少?
8.一批零件,前3天完成总任务的 。照这样计算,再过几天可以完成任务?
9. 一个长方形的周长是7.8cm,长和宽的比是2:1,这个长方形面积是多少?
和倍问题(差倍问题)
已知两个数量的和(或差)与它们的倍数关系,求这两个数量。关键找出1倍数量(或说单位1),画线段图表示题意。
练习:
1.甲乙的和是36,甲是乙的2倍。甲、乙各是多少?
2.妈妈比女儿大28岁,妈妈年龄是女儿的5倍,妈妈和女儿各有几岁?
3.一张课桌比一把椅子贵10元,椅子的单价是课桌的 ,课桌和椅子的单价各是多少元?
4.一个数的小数点向右移动二位后增加了87.12,这个数原来是多少?
篇11:和复习教案教学设计(人教新课标六年级下册)
教学内容:P29页第1-3题,完成练习五。
教学目的:
1、复习,使学生比较系统地掌握本单元所学的立体图形知识,认识圆柱、圆锥的特征和它们的体积之间的联系与区别,掌握圆柱表面积、体积,圆锥体积的计算公式,能正确计算。
2、学生的空间观念,培养学生有条理地对所学知识进行整理归纳的能力。
3、学生认真的学习态度。
教学重点:圆柱、圆锥表面积、体积的计算
教学难点:圆柱、圆锥的特征和它们的体积之间的联系与区别
教学过程:
一、复习圆柱
1、圆柱的特征
(1)教师出示画有形状、大小以及摆放位置不同的几个圆柱的幻灯片.指名让学生回答:这些图形叫什么图形?(圆柱)有什么特点?(圆柱是立体图形,圆柱有上、下两个面叫做底面,它们是完全相同的两个圆.两个底面之间的距离叫做高.侧面是一个曲面.)
(2)做第29页第1题:指出几个图形中哪些是圆柱。
2、圆柱的侧面积和表面积
(1)出示画有圆柱的表面展开图的投影片.先让学生观察,然后让学生回答:圆柱的侧面是指哪一部分?它是什么形状的?(长方形或正方形)圆柱的侧面积怎样计算?(底面的周长×高)为什么要这样计算?(因为:底面的周长=长方形的长,高=长方形的宽)
(2)表面积是由哪几部分组成的?(圆柱的侧面积+两个底面的面积)
(3)第29页第2题中求圆柱表面积的部分。
3、圆柱的体积
(1)圆柱的体积怎样计算?(底面积×高)计算公式是怎样推导出来的?(把圆柱切割开,拼成近似的长方体,使圆柱体的体积转化为长方体的体积。根据长方体的体积=底面积×高,推出圆柱体的体积=底面积×高)圆柱体的体积计算的字母公式是什么?(V=Sh)
(2)做第29页第2题中柱体积的部分。
4、学生独立完成第29页第3题。(先思考“用多少布料”求什么?“装多少水”又是求什么?区分清所求的是圆柱的表面积或体积时再计算)
二、复习圆锥
1.圆锥的特征
(1)圆锥有哪几个部分?有什么特点?(是立体图形,有一个顶点,底面是一个圆,侧面是一个曲面。从圆锥的顶点到底面圆心的距离,叫做圆锥的高。)
(2)做第91页第1题的下半题和第2题的第(3)小题.
让学生将圆锥的特征自己用简单的词汇填写在表中.教师提醒学生:“举例”一栏要填写自己知道的形状是圆锥的实物.
2.圆锥的体积.
(1)怎样计算圆锥的体积?(用底面积×高,再除以3)计算圆锥体积的字母公式是什么?(V= Sh)这个计算公式是怎样得到的?(通过实验得到的,圆锥体的体积等于和它等底等高的圆柱体体积的三分之一)
(2)做第29页第2题中有关圆锥体积的部分。
三、课堂练习
1、做练习五的第1题。(学生独立判断,并画出高,小组讨论订正)
2、做练习五的第2题。
(1)学生审题后思考:求用多少彩纸是求圆柱的什么?
(2)指名板演,其他学生独立完成于课堂练习本上。
3、做练习五第5题。(可建议学生用方程解答)
四、作业
练习五的第3、4、6题。
篇12:六年级数学总复习教案教学设计(人教新课标六年级下册)
数和计算
思考并回答:
1、在小学里我们学过哪些数?
2、最小的非0的自然数是多少?有没有最大的自然数?自然数的基本单位是多少?
3、小数又可以怎样分类?
4、我们学过的整数和小数的计数单位有哪些?数位的顺序是怎样的?
5、读数时应注意什么?读出下面各数:36000、24050000、500900000、40.57、4.057、0.4057、15000300 比较40.57、4.057 、0.4057的大小,从中可以得到什么规律?
6、写数时应注意什么?用阿拉伯数字写出下面各数:七千零三十八、七亿零三十八万、
三亿零五十万六千、零点零四零六
练习:
1、在数位顺序表里,小数点左边第一位是( )位,计数单位是( );第五位是( )位,计数单位是( )。小数点右边第一位是( )位,计数单位是( );第三位是( )位,计数单位是( )位。
2、最高位是百万位的整数是( )位数;最后一位是百分位的小数是( )位小数。
3、5830070420读作( )。“8”在( )位上,表示( );“7”在( )位上,表示( )。
4、有一个四位数,加上“1”就变成五位数,这个四位数是( );有一个四位数,减去“1”就变成三位数,这个四位数( )。
5、地球有多大?请读出下面数据。
地球的半径 6378.14千米 赤道长 40073.92千米
地球表面积 510067860平方千米 地球海洋面积 361745300平方千米
思考并回答:
1、3.150=3.15 、7.8=7.8000,这是根据什么?
2、一个数的小数点向左移动两位,再向右移动一位,它的值有什么变化?
3、1÷3、70.7÷33,商的小数部分的数字有什么规律?
4、把453.647分别精确到十位、个位、十分位(保留一位小数)、百分位(保留两位小数)各是多少?
5、下面的循环小数,如果各保留三位小数取它的近似值,该怎样写? . . . . .
0.72 0.3 3.150
6、以85400为例,省略万后面的尾数与写作以万为单位的数有什么区别?
7、下面各数省略万后面的尾数怎么写?改写成以万为单位的数又该怎么写?34820、408000、7136300、19800
8、三个连续的自然数的和是45,这三个数分别是( )、( )、( )。
练习:
1、9035000以万为单位写作( ),省略万后面的尾数写作( )。408000000以亿为单位写作( ),省略亿后面的尾数写作( )。
2、7.85353……写作( ),0.346346……写作( )。
3、0.04×1000就是将0.04的小数点向( )移动( )位。
4、25.4÷100 就是把25.4的小数点向( )移动( )位。3.002的小数点左移两位,是原数的( ),小数点右移三位,是原数的( )倍。
5、两个数相除的商是3.45,如果把被除数的小数点向右移动一位,除数的小数点向左移动 一位,商是( )。
数的整除
思考并回答:
1、下面的除式,哪些是整除关系?是整除关系的两个数要具备哪些条件?
32÷4、45÷7、12÷0.3、720÷90、2÷4
2、根据35、4、60、24、105、7、56、12这些数:(1)写出整除关系的除式,并分别说出谁是谁的因数,谁是谁的倍数。(2)这些数中,60的因数有哪几个?7的倍数有哪几个?(3)这些数中哪些能分别被2、3、5整除?
3、怎样判别一个自然数是质数还是合数?一个自然数不是质数,就一定是合数吗?质数是不是都是奇数?
4、什么叫质因数?什么叫分解质因数?
5、下面各题分解质因数是否正确?为什么?不对的应该怎样改正?
18=2×3×3、2×3×7=42、120=2×2×5×6、150=2×3×5×5×1
6、求下面各组数的最大公约数和最小公倍数:14和42、24和32、12和18
7、互质的两个数一定都是质数吗?怎样判别两个数是否是互质数?
练习:
1、在16、4、8、32、36、80、84、160这些数中,80的约数有( ),16的倍数有( )。
2、20的约数有( ),32的约数有( ),20和32的公约数有( ),其中最大的公约数是( )。
3、按照下面要求写出互质数:两个都是质数( );两个都是合数( );一个是质数,一个是合数( )。
4、把下面的数填在图内。6、8、9、10、12、15、18、20、21、25、30、32、35
能被3整除的数
能被5整除的数 能被2整除的数
5、求下面各组数的最大公约数和最小公倍数:27和18、39和117、8和15
6、一个数用2、3、5除正好都是整数,这个数最小是( );有一个数用它去除30、45、60正好都是整数,这个数最大是( )。
7、判断题:
(1) 没有约数2的自然数一定是奇数。
(2) 一个自然数的约数总比它的倍数小。
(3) 两个质数相乘,积一定是合数。
(4) 一个奇数加上7,一定能被2整除。
(5) 2、3、5都是质因数。
(6) 两个合数不能成为互质数。
(7) 17的约数都是质数。
(8) 因为3、5、6的最大公约数是1,所以它们的最小公倍数是3×5×6=90。
分数和百分数
思考并回答:xkb1.com
1、先填空,在回答:4/5=1÷ × 、4/5= ÷ ;7/9=1÷ × 、7/9= ÷
什么叫分数?分数的分子、分母个表示什么?分数单位表示什么意思?
2、什么叫百分率?“9/100米”与“9﹪”在意义上有什么区别?
3、什么是分数的基本性质?分数的基本性质与
商不变的性质、比的基本性质有什么联系?
4、什么叫约分?什么叫通分?你能说出约分和通分的方法吗?
5、下面括号里应填什么数?其中哪一个分数是最简分数?为什么?
24/40=( )/20=48/( )=( )/5=( )/15=36/( )
6、举例说明分数、小数、百分数的互化方法。
7、下面的分数哪些能化成有限小数?哪些不能化成有限小数?为什么?2/3、3/4、4/5、5/7、3/10、7/12、11/16、9/20、12/25、6/15
8、分数、小数、百分数混在一起,怎样比较它们的大小?比较0.6、2/3、61﹪的大小。
练习:
1、把3米长的钢管平均分成5段,每段钢管是全长的( )/( ),每段的长度是( )/( )米,3段占全长的( )﹪。
2、生产500吨化肥,计划25天完成,平均每天完成计划的( )﹪,每天生产( )吨。
3、3里面有( )个1/3,2/3里面有( )1/12,1里面有11个2/( ),100个1/7是( )。
4、7/15的分数单位是( ),添上( )个这样的分数单位等于1,减去( )个这样的分数单位等于1/5。
5、5/8的分母加上24,要使分数的大小不变,分子要( );6/15的分母减去5,要使分数的大小不变,分子要( )。
6、一个分数,它的单位是1/8,它有7个这样的单位,这个分数是( ),化成小数是( ),化百分数是( )。
量和计量
思考并回答:
1、在小学里已经学过哪些量?它们各有哪些计量单位?
各种量 基本单位 各单位之间的关系
长度 1米 1千米=( )米
1米=( )分米
1分米=( )厘米
1厘米=( )毫米
面积 1平方米 1平方千米=( )公顷
1平方千米=( )平方米
1公顷=( )平方米
1平方米=( )平方分米
1平方分米=( )平方厘米
体积 1立方米
1升 1立方米=( )立方分米
1立方分米=( )立方厘米
1升=( )毫升
质量 1千克 1吨=( )千克
1千克=( )克
时间 1秒 1日=( )时
1时=( )分
1分=( )秒
2、在进行单位之间的换算,或单名数与复名数之间的变换时,要注意什么?
练习:
1、填空:
(1)5米=( )分米 3.2 分米=( )厘米 5平方米=( )平方分米
3.2平方分米=( )平方厘米 52700平方米=( )公顷
(2)4.8升=( )毫升 1.6千克=( )克 7.3米=( )分米=( )厘米
(3)4.2公顷=( )平方米 0.8平方千米=( )公顷
1.05立方米=( )立方分米 1.45吨=( )千克
(4)210秒=( )分 1/6日=( )时 1时20分=( )分
2、选择:
(1)下列年份中,不是闰年的年份是( ) A1980年 B C21
(2)25厘米×( )=1米 A1/2 B4 C40
(3)面积是1平方米的正方形的边长是( ) A10厘米 B100厘米 C10000厘米
(4)将1立方米的大立方体锯成体积是1立方厘米的小立方体,然后将它们一个一个地连接起来,总长度是( )。 A1千米 B10千米 C100千米
3、判断题:xkb1.com
(1) 第一季度有91天的这一年是闰年。
(2) 一水池装了0.3立方米的水,这池水的容积是300升。
篇13:小学六年级数学复习计划 教案教学设计(人教新课标六年级下册)
小学毕业总复习是小学数学教学的重要组成部分,是对学生全面而系统地巩固整个小学阶段所学的数学基础知识和基本技能,提高知识的掌握水平,进一步发展能力。毕业总复习作为一种引导小学生对旧知识进行再学习的过程它应是一个有目的,有计划的学习活动过程。所以,我制定出如下切实可行的计划,以增强复习的针对性,提高复习效率:
一、小学数学毕业总复习的任务
从小学毕业总复习在整个小学数学教学过程中所处的地位来看,它的任务有以下几点:
1、系统地整理知识。实践表明,学生对数学知识的掌握在很大程度上取决于复习中的系统整理,而小学毕业复习是对小学阶段所学知识形成一种网络结构。
2、全面巩固所学知识。毕业复习的本身是一种重新学习的过程,是对所学知识从掌握水平达到熟练掌握水平。
3、查漏补缺。结合学生的实际,在知识的理解和掌握程度上不可避免地存在某些问题。所以,毕业复习的再学习过程要弥补知识上掌握的缺陷。
4、进一步提高能力。进一步提高学生的计算、初步的逻辑思维、空间观念和解决实际问题的能力。让学生在复习中应充分体现从“学会”到“会学”的转化。
二、小学数学毕业总复习内容的组织
教材在最后一章安排了总复习内容,形成四大知识结构体系,并加以练习。这是旧教材所无法相比的。在复习中,充分利用教材,合理组织内容,适当渗透,拓展知识面。
三、小学数学毕业总复习过程的安排
由于复习是在原有基础上对已学过的内容进行再学习,所以,学生原有的学习情况直接制约着复习过程的安排。同时,也要根据本班实际复习对象和复习时间来确定复习过程和时间上的安排。结合我班实际,总复习阶段共计30课时,复习过程和时间安排大致如下:
(一)、数与代数(12课时)
这节重点确定在一系列概念和分数、小数的基本性质、四则运算和简便运算上。
1、系统地整理有关数的内容,建立概念体系,加强概念的理解。
2、沟通内容间的联系,促进整体感知
3、全面概念四则运算和计算方法,提高计算水平。
4、利用运算定律,掌握简便运算,提高计算效率。
5、精心设计练习,提高综合计算能力。
(二)、空间与图形(10课时)
1、加深对有关图形的基本特征及相互关系的认识。
2、明确有关平面图形面积公式及常见几何体体积公式的推倒过程。
3、 体会公式推倒过程中的基本数学方法。
4、解答有关平面图形周长、面积、常见几何体表面积、体积计算的简单实际问题。发展空间观念。
5、体会图形的平移与旋转、放大与缩小,加深对轴对称图形的认识,掌握描述物体间位置关系的不同方法,增强利用几何直观进行思考的能力。
(三)、统计与可能性(4课时)
1、进一步掌握收集、整理、描述和分析数据的方法,感受各种统计图表和统计量的不同特点;
2、能根据统计图表所呈现的信息进行简单的分析和思考。
3、增强数据分析意识,发展统计观念。
4、体会事件发生的可能性意义,会计算一些简单事件发生的可能性,体会游戏规则的公平性。
(四)、综合应用(4课时)
在系统复习的过程中,进一步体会不同领域数学内容的联系和综合,提高综合运用数学知识和方法解决实际问题的能力。
四、课时安排
数与代数
1、数的认识(3课时)
2、数的运算(5课时)
3、式与方程(2课时)
4、正比例和反比例(2课时)
空间与图形:
1、图形的认识、测量(2课时)
2、平面图形的周长与面积(2课时)
3、立体图形的表面积和体积(4课时)
4、图形与变换(1课时)
5、图形与位置(1课时)
统计与可能性4课时
综合应用3课时
五、复习中应注意的问题
1、对于小学数学毕业总复习内容、过程和时间的计划安排,在实际教学中要根据实际情况作出调整。
2、要注意小学数学知识与中学知识结构上的衔接,要为中学的学习做些铺垫,适当拓展知识点。
3、根据实际需要对计划的复习内容、过程和时间上做出调整。既要全面学到知识,又要掌握复习知识的深浅程度。
4、针对本班的实际情况,应抓好优生的保持和提高、差生的转化工作,这是提高本班乃至本校的学业成绩的关键点。
5、注意学习形式的多样性。对差生的转化,可采取多种形式如;个别辅导、集体订正、学生互助、家长督促等。统合采用多种有利的因素,以得到教学的最好效果。
6、注意学生的思想动态。外因最终还是要通过内因才能发挥作用。只有把学生的学习内化为学生的实际需要,才能让学生在愉快中学,教师也在愉快中教,教学效果也就明显了。
7、注意与其他教师沟通交流,同事之间要取长补短,互相学习。
篇14:《灯光》教学设计 (人教新课标六年级下册)
教学目标
1.正确、流利、有感情地朗读课文。
2.读懂课文,理解革命先烈对未来的憧憬和为此作出的牺牲,懂得今天的幸福生活来之不易。
重点 体会郝副营长生前所说的话,从而感受今天生活来之不易。
教学准备 多媒体课件
板书设计 11、灯 光
深情地 憧憬
壮烈地 牺牲
教学过程
教学环节 教师活动 学生活动 个性化设计
一、谈话引入,揭示课题
二、检查预习朗读
三、观察插图,理解课文2-5节
四、默读训练,理解课文6-10节
五、总结
1.师述:每当晚霞渐渐隐褪,带走最后一抹阳光时,意味着夜幕已悄然降临了。每逢此时,人们有的在灯光下欢聚一堂,叙说亲情;有的在灯光下愉快地作一次书中散步;还有的则徜徉于五彩缤纷的霓虹灯下的人流中,尽情地享受着休闲时光……灯光是人们夜色中的明珠,更是人们工作、生活中不可缺少的朋友。(徜徉--闲游;安闲自在地步行。)
2.今天,我们要学习的第十三课《灯光》中讲述了一个在解放战争时期,郝副营长憧憬灯光并为之献身的感人故事。
3.出示课题。
读通课文,自学生字词,自学课后习题,抄写词语。
1.请同学看插图,默读课文,找到文中描写插图的相应内容。
2.指名读文:
3.自由朗读,图文对照,请你谈谈你看懂了读懂了什么?
师抓要点,有机点拨。
“憧憬”是什么意思?他憧憬什么?为什么郝副营长对灯光的憧憬是深情的?
4.文中哪些地方要读出深情的语气?
5.引读,第二节中的第1、2句向我们交代了郝副营长是--(著名……经验),他今晚的战斗任务是--(由他……道路)
1.过渡:郝副营长美好的憧憬实现了吗?
2.齐读第10节。
3.师述,这位年轻的战斗英雄,为了革命的胜利,为了祖国下一代能拥有良好的学习条件,献出了宝贵的生命,自己却没来得及看到憧憬已久的电灯,这不能不说是一种遗憾。
4.默读回答问题:
郝副营长从深情美好的憧憬到献出22岁的年轻生命而未见成电灯,这期间发生了什么事情了呢?分小组自学课文
出示:默读回答问题。
(1)突击连的任务是什么?
(2)战斗打响后,后续部队为什么和突击队失去了联系?
(3)郝副营长是怎样牺牲的?
5.交流自学情况:
6.师述:是啊,我们年轻的战斗英雄的壮举令人钦佩不已。他用壮烈地牺牲换来了围歼战的胜利,自始至终没有考虑个人的安危。他认为自己为革命的胜利而牺牲是毫无遗憾的。
7.选择文章的中心
出示小黑板,选择文章中心,并说明理由:
①歌颂了他热爱生活的好品质。(舍主取次)
②刻画了他在危急时刻,急中生智为大部队燃书照明自己牺牲的感人事迹。(主要内容)
③歌颂了他为了战斗的胜利,为了孩子们能有一个幸福的明天而不惜献身的崇高品质。
8.指导朗读第6-8节
英雄可歌可泣的事迹令人敬仰,现在老师和同学们-起配合有感情地朗读第六至八节。
每当夜幕降临,我们都能在灯下学习生活,又怎能忘记那些诸如本文主人公那样的英雄们,我们应该好好珍惜这来之不易的美好生活,并为之发愤图强!
齐读课题
读课文、朗读
看插图,默读课文,找到文中描写插图的相应内容。
(读)大约一切准备……憧憬里去了。
自由读,谈谈读懂了什么
自读,指名读。
引读
齐读第2-5节,注意读出深情的语气。
快速默读第6-10节,哪一节中直接告诉了我们?
齐读第10节。
默读回答问题:
答题的方法与步骤。
(1)理解题意
(2)找出内容
(3)摘取要点
(4)组句答题
交流自学情况:
朗读第6-8节
完成课后题3,背诵6-9节 引导通读全文,把学生的思考引向深入,奠定文章的感情基调。
引导学生悟文章写作方面的特色。(倒叙、前后照应)
由天安门广场的“灯光”走出回忆,悟作者对先烈的怀念;写由“灯光”所想到的,在读文中融入深深的怀念。
作业布置 完成课后题3,背诵6-9节
[《灯光》教学设计 (人教新课标六年级下册)]
篇15:小学数学六年级下册《自行车里的数学》说课稿
小学数学六年级下册《自行车里的数学》说课稿
我确立的小课题是如何提高小组合作学习的效率。
这节课的内容是小学数学六年级下册的一节综合应用课《自行车里的数学》,主要研究两个问题:一是普通车的速度与其内在结构的关系;二是变速自行车能变化出多少种速度。
根据教学内容以及新课程理念,我确立了这样的教学目标:
1.运用所学的圆排列组合比例等知识解决生活中常见的有关自行车里的问题,了解数学与生活的.广泛联系。
2.经历“提出问题――分析问题――建立数学模型――求解――解释与应用”的解决问题的思考方法。
3.获得运用数学解决实际问题的思考方法。
教学重点:探究自行车的速度与什么有关,有怎样的关系。
在本节课的教学中,为了提高小组合作学习的效率,我在小组的组建,成员的分工,以及合作学习技能的培养三个方面做了一些尝试。
1.在组建小组时,考虑到学生间的个体差异,把活泼好动和沉默寡言的分到一组,学习好的和学习上有困难的分到一组,使小组成员之间能够互相弥补。
2.每个小组成员分工明确,各负其责,把每个小组的六个成员编上号,(1)号是组长,(2)号是首席发言人,(3)号是声音调控员,(4)号是计算员,(5)号是记录员,(6)号协同计算员计算。
3.在合作学习时,要注重培养学生的合作技能,比如能够认真倾听别人的发言;有不懂的问题虚心求助于别人;组长善于组织学习并协调成员之间的关系。
这就是我在小组合作学习中的一点想法,具体的做法会体现在教学中。
★ 《解决问题》 教案教学设计(人教新课标六年级下册)
★ 第二课《节约用水》 教案教学设计(人教新课标六年级下册)
★ 常用的数量关系式 教案教学设计(人教新课标六年级下册)
★ 人教新课标六年级数学教学的工作计划
★ 第三单元分数除法 教案教学设计(人教新课标六年级下册)
★ 《位置》教学设计 (人教新课标六年级上册)
★ 小学数学几何公式表(理解记忆) 教案教学设计(人教新课标六年级下册)
★ 比例的意义和基本性质 教案教学设计(人教新课标六年级下册)
★ 分数的意义 教案教学设计(人教新课标五年级下册)
★ 《吨的认识》 教案教学设计(人教新课标三年级下册)
关键词:
下一篇:最后一页
广告
X 关闭
X 关闭
-
-
京张高铁每日开行17对冬奥列车
京张高铁每日开行17对冬奥列车 预计冬奥服务保障期运送运动员、技术官员、持票观众等20万人次 2月6日,2022北京新闻中心举行“北
-
-
北京冬奥会开幕式上 小学生朱德恩深情演绎《我和我的祖国》
北京冬奥会开幕式上 小学生朱德恩深情演绎《我和我的祖国》 9岁小号手苦练悬臂吹响颂歌 2月4日晚,在北京冬奥会开幕式上,9岁的
-
-
2022北京冬奥会开幕式这19首乐曲串烧不简单
多名指挥家列曲目单 再由作曲家重新编曲 本报专访冬奥开幕式音乐总监赵麟 开幕式这19首乐曲串烧不简单 “二十四节气”倒计时、
-
-
“一墩难求” 冰墩墩引爆购买潮
设计师:没想到冰墩墩成爆款一墩难求冰墩墩引爆购买潮 北京冬奥组委:会源源不断供货北京冬奥会吉祥物冰墩墩近日引爆购买潮,导致一墩难求